# Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction

Robert B. Jackson<sup>a,b,1</sup>, Avner Vengosh<sup>a</sup>, Thomas H. Darrah<sup>a</sup>, Nathaniel R. Warner<sup>a</sup>, Adrian Down<sup>a,b</sup>, Robert J. Poreda<sup>c</sup>, Stephen G. Osborn<sup>d</sup>, Kaiguang Zhao<sup>a,b</sup>, and Jonathan D. Karr<sup>a,b</sup>

<sup>a</sup>Division of Earth and Ocean Sciences, Nicholas School of the Environment and <sup>b</sup>Center on Global Change, Duke University, Durham, NC 27708; <sup>c</sup>Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627; and <sup>d</sup>Geological Sciences Department, California State Polytechnic University, Pomona, CA 91768

Edited by Susan E. Trumbore, Max Planck Institute for Biogeochemistry, Jena, Germany, and approved June 3, 2013 (received for review December 17, 2012)

Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes <1 km from natural gas wells (P = 0.0006). Ethane was 23 times higher in homes <1 km from gas wells (P = 0.0013); propane was detected in 10 water wells, all within approximately 1 km distance (P = 0.01). Of three factors previously proposed to influence gas concentrations in shallow groundwater (distances to gas wells, valley bottoms, and the Appalachian Structural Front, a proxy for tectonic deformation), distance to gas wells was highly significant for methane concentrations (P = 0.007; multiple regression), whereas distances to valley bottoms and the Appalachian Structural Front were not significant (P = 0.27 and P = 0.11, respectively). Distance to gas wells was also the most significant factor for Pearson and Spearman correlation analyses (P < 0.01). For ethane concentrations, distance to gas wells was the only statistically significant factor (P < 0.005). Isotopic signatures  $(\delta^{13}C-CH_4, \delta^{13}C-C_2H_6, \text{ and } \delta^2H-CH_4)$ , hydrocarbon ratios (methane to ethane and propane), and the ratio of the noble gas  ${}^{4}$ He to CH<sub>4</sub> in groundwater were characteristic of a thermally postmature Marcellus-like source in some cases. Overall, our data suggest that some homeowners living <1 km from gas wells have drinking water contaminated with stray gases.

carbon, hydrogen, and helium isotopes | groundwater contamination | geochemical fingerprinting | fracking | hydrology and ecology

U nconventional sources of gas and oil are transforming energy supplies in the United States (1, 2). Horizontal drilling and hydraulic fracturing are driving this transformation, with shale gas and other unconventional sources now yielding more than one-half of all US natural gas supply. In January of 2013, for instance, the daily production of methane (CH<sub>4</sub>) in the United States rose to  $\sim 2 \times 10^9$  m<sup>3</sup>, up 30% from the beginning of 2005 (3).

Along with the benefits of rising shale gas extraction, public concerns about the environmental consequences of hydraulic fracturing and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health effects for workers and people living near well pads (5), induced seismicity (7), and controversy over the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water contamination from fracturing fluids, natural formation waters, and stray gases (4, 10–12).

Despite public concerns over possible water contamination, only a few studies have examined drinking water quality related to shale gas extraction (4, 11, 13). Working in the Marcellus region of Pennsylvania, we published peer-reviewed studies of the issue, finding no evidence for increased concentrations of salts, metals, or radioactivity in drinking water wells accompanying shale gas extraction (4, 11). We did find higher methane concentrations and less negative  $\delta^{13}$ C-CH<sub>4</sub> signatures, consistent with a natural gas source, in water for homeowners living <1 km from shale gas wells (4). Here, we present a more extensive dataset for natural gas in shallow water wells in northeastern Pennsylvania, comparing the data with sources of thermogenic methane, biogenically derived methane, and methane found in natural seeps. We present comprehensive analyses for distance to gas wells and ethane and propane concentrations, two hydrocarbons that are not derived from biogenic activity and are associated only with thermogenic sources. Finally, we use extensive isotopic data [e.g.,  $\delta^{13}$ C-CH<sub>4</sub>,  $\delta^{2}$ H-CH<sub>4</sub>,  $\delta^{13}$ C-C<sub>2</sub>H<sub>6</sub>,  $\delta^{13}$ C-dissolved inorganic carbon ( $\delta^{13}$ C-DIC), and  $\delta^{2}$ H-H<sub>2</sub>O] and helium analysis (<sup>4</sup>He/CH<sub>4</sub>) to distinguish among different sources for the gases observed (14–16).

Our study area (Figs. S1 and S2) is within the Appalachian Plateaus physiographic province (17, 18) and includes six counties in Pennsylvania (Bradford, Lackawanna, Sullivan, Susquehanna, Wayne, and Wyoming). We sampled 81 new drinking water wells from the three principle aquifers (Alluvium, Catskill, and Lock Haven) (Fig. S1) (11). We combined the data with results from 60 previously sampled wells in Pennsylvania (4) and included a few wells from the Genesee Formation in Otsego County of New York (4). The typical depth of drinking water wells in our study was 60– 90 m (11). We also sampled a natural methane seep at Salt Springs State Park in Franklin Forks, Pennsylvania (N 41.91397, W 75.8663; Susquehanna County) to compare with drinking water from homes in our study, some located within a few kilometers of the spring.

Descriptions of the underlying geology, including the Marcellus Formation found 1,500-2,500 m underground, are presented in refs. 4 and 11 and Fig. S2. Previous researchers have characterized the region's geology and aquifers (19-23). Briefly, the two major bedrock aquifers are the Upper Devonian Catskill Formation, comprised primarily of a deltaic clastic wedge gray-green to grayred sandstone, siltstone, and shale, and the underlying Lock Haven Formation, consisting of interbedded fine-grained sandstone, siltstone, and silty shale (19, 22, 24). The two formations can be as deep as  $\sim$ 1,000 m in the study area and have been exploited elsewhere for oil and gas historically. The sedimentary sequences are gently folded and dip shallowly  $(1-3^{\circ})$  to the east and south (Fig. S2), creating alternating exposures of synclines and anticlines at the surface (17, 23, 25). These formations are overlain by the Alluvium aquifer, comprised of unconsolidated glacial till, alluvium sediments, and postglacial deposits found primarily in valley bottoms (20, 22).

Author contributions: R.B.J., A.V., T.H.D., N.R.W., and A.D. designed research; R.B.J., A.V., T.H.D., N.R.W., A.D., R.J.P., S.G.O., K.Z., and J.D.K. performed research; R.B.J., A.V., T.H.D., N.R.W., A.D., R.J.P., K.Z., and J.D.K. analyzed data; and R.B.J., A.V., T.H.D., N.R.W., and A.D. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

<sup>&</sup>lt;sup>1</sup>To whom correspondence should be addressed. E-mail: jackson@duke.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.

<sup>1073/</sup>pnas.1221635110/-/DCSupplemental.



Fig. 1. Concentrations of (*Upper*) methane, (*Lower*) ethane, and (*Lower Inset*) propane (milligrams liter<sup>-1</sup>) in drinking water wells vs. distance to natural gas wells (kilometers). The locations of natural gas wells were obtained from the Pennsylvania DEP and Pennsylvania Spatial Data Access databases (54). The gray band in *Upper* is the range for considering hazard mitigation recommended by the US Department of the Interior (10–28 mg CH<sub>4</sub>/L); the department recommends immediate remediation for any value >28 mg CH<sub>4</sub>/L.

#### **Results and Discussion**

Dissolved methane was detected in the drinking water of 82% of the houses sampled (115 of 141). Methane concentrations in drinking water wells of homes <1 km from natural gas wells (59 of 141) were six times higher on average than concentrations for homes farther away (P = 0.0006, Kruskal–Wallis test) (Fig. 1 and Fig. S3). Of 12 houses where CH<sub>4</sub> concentrations were greater than 28 mg/L (the threshold for immediate remediation set by the US Department of the Interior), 11 houses were within 1-km distance of an active shale gas well (Fig. 1). The only exception was a home with a value of 32 mg CH<sub>4</sub>/L at 1.4-km distance.

Similar to the results for methane, concentrations of ethane  $(C_2H_6)$  and propane  $(C_3H_8)$  were also higher in drinking water of homes near natural gas wells (Fig. 1). Ethane was detected in 40 of 133 homes (30%; 8 fewer homes were sampled for ethane and propane than for methane). Propane was detected in water wells in 10 of 133 homes, all approximately <1 km from a shale gas well (P = 0.01) (Fig. 1, *Lower Inset*). Ethane concentrations were 23 times higher on average for homes <1 km from a gas well: 0.18 compared with 0.008 mg C<sub>2</sub>H<sub>6</sub>/L (P = 0.001, Kruskal–Wallis). Seven of eight C<sub>2</sub>H<sub>6</sub> concentrations >0.5 mg/L were found <1 km

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1221635110

from a gas well (Fig. 1), with the eighth point only 1.1 km away (Fig. 1). Moreover, the higher ethane concentrations all occurred in groundwater with methane concentrations >15 mg/L (P = 0.003 for the regression of C<sub>2</sub> and C<sub>1</sub>) (Fig. S4), although not all higher methane concentration waters had elevated ethane.

Ratios of ethane to methane  $(C_2/C_1)$  and propane to methane  $(C_3/C_1)$  were much higher for homes within ~1 km of natural gas wells (Fig. 2). Our high  $C_3/C_1$  samples were also an order of magnitude greater than in salt-rich waters from a natural methane seep at the nearby Salt Springs State Park (mean  $[C_3]/[C_1] = 0.000029$  and [C3] = 0.0022 mg/L for the salt spring samples). Because microbes effectively do not produce ethane or propane in the subsurface (26, 27), our observed values within ~1 km of drilling seem to rule out a biogenic methane source, and they are consistent with both wetter (higher  $C_2 + C_3$  content) gases found in the Marcellus Formation and our earlier observation of methane in drinking water wells in the region (4).

Along with distance to gas wells (4), proximity to both valley bottom streams (i.e., discharge areas) (28) and the Appalachian Structural Front (ASF; an index for the trend in increasing thermal maturity and degree of tectonic deformation) has been suggested to influence dissolved gas concentrations. Of these factors, distance to gas wells was the dominant statistical factor in our analyses for both methane (P = 0.0007) (Table 1, multiple regression analysis) and ethane (P < 0.005) (Table 1). In contrast, neither distance to the ASF (P = 0.11) nor distance to valley bottom streams (P = 0.27) was significant for methane concentrations analysis using linear regression. For single correlation factors, distance to gas wells was again the dominant statistical term (P =0.0003 and P = 0.001 for Pearson and Spearman coefficients, respectively). Distance to the ASF was slightly significant by Pearson and Spearman correlation analyses (P = 0.04 and P = 0.02, respectively), whereas distance to valley bottom streams was slightly significant only for the nonparametric Spearman analysis (P = 0.22) for Pearson and P = 0.01 for Spearman) (Table 1). For observed ethane concentrations, distance to gas wells was the only factor in our dataset that was statistically significant (P < 0.005, regardless of whether analyzed by multiple regression, Pearson correlation, or Spearman analyses) (Table 1).



**Fig. 2.** The ratio of ethane to methane  $(C_2/C_1)$  and (Inset) propane to methane  $(C_3/C_1)$  concentrations in drinking water wells as a function of distance to natural gas wells (kilometers). The data are plotted for all cases where  $[CH_4]$ ,  $[C_2H_6]$ , and  $[C_3H_8]$  were above detection limits or  $[CH_4]$  was >0.5 mg/L but  $[C_2H_6]$  or  $[C_3H_8]$  was below detection limits using the detection limits of 0.0005 and 0.0001 mg/L for  $[C_2H_6]$  and  $[C_3H_8]$ , respectively.

| Table 1. | Statistical | analyses for | [CH <sub>4</sub> ] | and | $[C_2H_6]$ |
|----------|-------------|--------------|--------------------|-----|------------|
|----------|-------------|--------------|--------------------|-----|------------|

|                                  | Distance<br>to gas wells | Distance<br>to streams | Distance<br>to ASF |
|----------------------------------|--------------------------|------------------------|--------------------|
| [CH <sub>4</sub> ]               |                          |                        |                    |
| Multiple regression              | <i>P</i> = 0.0007        | <i>P</i> = 0.27        | <i>P</i> = 0.11    |
| Pearson r                        | <i>P</i> = 0.0003        | <i>P</i> = 0.22        | <i>P</i> = 0.04    |
| Spearman ρ                       | <i>P</i> = 0.007         | <i>P</i> = 0.01        | <i>P</i> = 0.02    |
| [C <sub>2</sub> H <sub>6</sub> ] |                          |                        |                    |
| Multiple regression              | <i>P</i> = 0.0034        | <i>P</i> = 0.053       | P = 0.45           |
| Pearson r                        | <i>P</i> = 0.003         | <i>P</i> = 0.36        | <i>P</i> = 0.11    |
| Spearman $\rho$                  | <i>P</i> = 0.004         | <i>P</i> = 0.95        | <i>P</i> = 0.21    |

Isotopic signatures and gas ratios provide additional insight into the sources of gases in groundwater. Signatures of  $\delta^{13}$ C-CH<sub>4</sub> > -40% (reference to Vienna Pee Dee Belemnite standard) generally suggest a thermogenic origin for methane, whereas  $\delta^{13}$ C- $CH_4$  values < -60\% suggest a biogenically derived methane source (27, 29, 30). Across our dataset, the most thermogenic  $\delta^{13}$ C-CH<sub>4</sub> signatures (i.e., most enriched in <sup>13</sup>C) in drinking water were generally found in houses with elevated [CH<sub>4</sub>] <1 km from natural gas wells (Fig. 3A). In fact, all drinking water wells with methane concentrations >10 mg/L, the US Department of Interior's threshold for considering remediation, have  $\delta^{13}$ C-CH<sub>4</sub> signatures consistent with thermogenic natural gas. Our data also show a population of homes near natural gas wells with water that has  $\delta^{13}$ C-CH<sub>4</sub> signatures that seem to be microbial in origin, specifically those homes shown in Fig. 3A, lower left corner. The combination of our  $\delta^{13}$ C-CH<sub>4</sub> (Fig. 3A) and  $\delta^{2}$ H-CH<sub>4</sub> data (Fig. 3B) overall, however, suggests that a subset of homes near natural gas wells has methane with a higher thermal maturity than homes farther away.

Analyses of  $\delta^{13}$ C-CH<sub>4</sub> and  $\delta^{13}$ C-C<sub>2</sub>H<sub>6</sub> can help constrain potential sources of thermally mature natural gases (14, 15, 30). Because organic matter cracks to form oil and then natural gas, the gases initially are enriched in higher aliphatic hydrocarbons C<sub>2</sub> and C<sub>3</sub> (e.g., C<sub>3</sub> > C<sub>2</sub> > C<sub>1</sub>; i.e., a relatively wet gas). With increasing thermal maturity, the heavier hydrocarbons are progressively broken down, increasing the C<sub>1</sub>:C<sub>2</sub><sup>+</sup> ratio and leading to isotopic compositions that become increasingly heavier or enriched (31). In most natural gases, the isotopic composition ( $\delta^{13}$ C) of C<sub>3</sub> > C<sub>2</sub> > C<sub>1</sub> (i.e.,  $\delta^{13}$ C of ethane is heavier than methane). In thermally mature black shales, however, this maturity trend reverses, creating diagnostic isotopic reversals in which the  $\delta^{13}$ C-CH<sub>4</sub> becomes heavier than  $\delta^{13}$ C-C<sub>2</sub>H<sub>6</sub> ( $\Delta^{13}$ C =  $\delta^{13}$ C-CH<sub>4</sub> –  $\delta^{13}$ C-C<sub>2</sub>H<sub>6</sub> > 1) (14, 15, 28, 30, 32).

For 11 drinking water samples in our dataset with sufficient ethane to analyze isotopic signatures, 11 samples were located <1.1 km from drilling, and 6 samples exhibited clear isotopic reversals similar to Marcellus production gases (Fig. 4). Conversely, five drinking water samples and spring water from Salt Springs State Park showed the more common trend consistent with Upper Devonian production gases (Fig. 4). In the study area, these isotopic values suggest multiple sources for hydrocarbon gases. The Upper Devonian gases are likely introduced into the shallow crust either by natural processes over geologic time or through leakage around the casing in the annular space of the production well. In contrast, natural gas with heavy  $\delta^{13}$ C-CH<sub>4</sub> and  $\Delta^{13}$ C > 0 likely stems from Marcellus production gases or a mixture of Marcellus gases and other annulus gases that migrated to the surface during drilling, well completion, or production.

Similar to our data, independent CH<sub>4</sub> measurements taken by the US Environmental Protection Agency (EPA) in Dimock, Pennsylvania (Residential Data Reports found at http://www. epaosc.org/site/doc\_list.aspx?site\_id=7555) in January of 2012 also show three  $\delta^{13}$ C-CH<sub>4</sub> values in drinking water wells between -24.98% and -29.36%  $\delta^{13}$ C-CH<sub>4</sub> and five samples with  $\delta^{13}$ C-CH<sub>4</sub> values in the range of Marcellus gas defined in ref. 28. The heaviest methane isotopic signatures in the EPA samples



**Fig. 3.** (A) Methane concentration, (B)  $\delta^2$ H-CH<sub>4</sub>, and (C) methane to ethane + propane ratio plotted against  $\delta^{13}$ C-CH<sub>4</sub>. The grayscale shading refers to (A) distance to nearest gas wells and (B and C) methane concentration. The solid lines in *B* distinguishing natural gas sources are from ref. 27; the mixed line in *B* comes from the standard mixing equations in ref. 14. C shows two hypothetical trajectories: simple mixing between thermogenically and biogenically derived gas (lower curve) and either diffusive migration or a three-component mixture between Middle and Upper Devonian gases and shallow biogenic gases (upper curve).



**Fig. 4.** Stable isotope signatures (‰ VPDB) of methane ( $\delta^{13}$ C-CH<sub>4</sub>) vs.  $\delta^{13}$ C for methane minus ethane ( $\Delta^{13}$ C =  $\delta^{13}$ CH<sub>4</sub> –  $\delta^{13}$ C<sub>2</sub>H<sub>6</sub>); 6 of 11 drinking water samples exhibited isotopic reversals and  $\delta^{13}$ C-CH<sub>4</sub> values consistent with Marcellus production gas (14, 28, 55). In contrast, five drinking water samples and the salt spring at Salt Springs State Park (filled square) had  $\delta^{13}$ C-CH<sub>4</sub> and  $\Delta^{13}$ C = 0 consistent with Upper Devonian production gase (14, 55). Eleven drinking water samples had sufficient ethane concentrations for isotopic determinations. Ten of the samples were <1 km distance from shale gas wells, and one sample is at 1.1 km distance (the point in the lower left corner of the plot).

 $(-24.98\% \delta^{13}\text{C-CH}_4)$  exceeded the values observed for ethane  $(-31.2\% \delta^{13}\text{C-C}_2\text{H}_6)$ , an isotopic reversal  $(\Delta^{13}\text{C} = 6.22\%)$  characteristic of Marcellus or other deeper gas compared with gases from Upper Devonian sequences (14, 28).

Helium is an inert noble gas with a radiogenic isotope, <sup>4</sup>He, that is a major component of thermogenic natural gas. Similar to hydrocarbon components, the abundance and isotopic composition of helium can help distinguish between potential sources and/or residence times of fluids in the crust, including natural gases (15, 16, 33). Across our dataset, the ratio of <sup>4</sup>He:CH<sub>4</sub> in most drinking water wells showed a typical range between  $\sim 2 \times 10^{-3}$  and  $1 \times 10^{-2}$ , independent of distance to natural gas wells (Fig. 5). In contrast, a subset of points with elevated [CH<sub>4</sub>] has a <sup>4</sup>He:CH<sub>4</sub> ratio significantly below the range established for shallow drinking water in the region and consistent with a mixture between shallow groundwater and Marcellus production gases there ( $\sim 2-5 \times 10^{-4}$ ) (Fig. 5) (15).

The relative proportions of methane to higher-chain hydrocarbons, such as ethane and propane, can also be used to help differentiate biogenically and thermogenically derived methane as well as different thermogenic sources of natural gas (34). As described above, low ratios of methane to higher-chain hydrocarbons (~<100) in water typically suggest a hydrocarbon gas derived from a thermogenic source, whereas ratios of methane to higher-chain hydrocarbons >>1,000 suggest a microbial origin for the gas (27). Across our hydrocarbon dataset, ~15 samples seem to fall within the range corresponding to thermogenic gas, whereas the composition of 5 or 6 samples seems to be microbial in origin (Fig. 3C). The other points fell on two intermediate trajectories. One trajectory is simple mixing between thermogenically and biogenically derived gas (lower curve in Fig. 3C). The other trajectory reflects either diffusive migration or a more complex, three-component mixture between Middle and Upper Devonian gases and shallow biogenic sources (30, 35) (upper trajectory in Fig. 3C).

The relative distribution of ethane and propane provides additional insight into the source and mixture of gases. The ratio of propane to methane concentrations plotted against  $[C_3H_8]$  (Fig. S5) shows that at least 6 of 10 water samples with detectable  $[C_3H_8]$  had an order of magnitude greater  $[C_3]/[C_1]$  ratio and  $[C_3]$  content than spring water from the natural methane seep at the Salt Springs State Park. The salt spring is the only location for which we found detectable  $[C_3]$  outside of our 11 samples (mean  $[C_3]/[C_1] = 0.00029$  and [C3] = 0.0022 mg/L for the Salt Springs samples) (Fig. S5).

The abundance and relative proportions of aliphatic hydrocarbons (i.e., propane and ethane) and methane in groundwater are also useful for comparing with production gases (14, 36) and samples from the Salt Springs State Park. Ratios of propane to ethane  $(C_3/C_2)$  in our dataset were generally higher than ratios for the Salt Springs State Park, and ratios of methane to ethane  $(C_1/$  $C_2$ ) were generally lower (Fig. S6), approaching ratios for Marcellus gases in some cases (Fig. S6). We also observed that the highest methane concentrations coincided with increased abundances of ethane and propane and a higher proportion of propane relative to ethane (Fig. S7). The observed gas composition in groundwater samples also had a substantially higher proportion of propane relative to ethane than water from the Salt Springs State Park, which is known to have historic methane-rich discharges (11, 37) (Fig. S7). Based on limited available production data, the Marcellus production gases have a wetness  $(C_2 + C_3)$  of at least 1–2% and  $C_3/C_2$  of ~>0.03%, whereas Upper Devonian gases, specifically those gases observed in Upper Devonian aquifers before shale gas development (30), tend to be relatively depleted in wetter gases; samples from the Salt Springs State Park had intermediate wetness, which is discussed above (14, 30). As a result, increasing proportions of  $C_3/C_2$  tend to be more representative of gases from Marcellus-producing wells (Fig. S6) than Upper Devonian Formations or Salt Springs State Park.

An enrichment of <sup>13</sup>C in DIC (e.g.,  $\delta^{13}$ C-DIC > +10‰) and positive correlations between  $\delta^{13}$ C-DIC and  $\delta^{13}$ C-CH<sub>4</sub> and between  $\delta^2$ H-H<sub>2</sub>O and  $\delta^2$ H-CH<sub>4</sub> have all been used as indicators of microbial methane sourced from relatively shallow depths (~<550 m) (38, 39). Most of our  $\delta^{13}$ C-DIC values were 20–25‰ lighter (more negative) than typical for DIC influenced by microbially derived methane in shallow groundwater, and the  $\delta^{13}$ C-CH<sub>4</sub> values of the samples showed no evidence of a positive relationship with  $\delta^{13}$ C-DIC (and even a slight negative relationship; *P* = 0.003) (Fig. S8, *Upper*). We also found no statistical relationship between the  $\delta^2$ H values of methane and  $\delta^2$ H of water (Fig. S8, *Lower*). Based on these data and similar to the observations in the work by Osborn et al. (4), most of the methane in our samples does not



**Fig. 5.** The ratio of <sup>4</sup>He:CH<sub>4</sub> concentrations in drinking water wells vs. distance to gas wells (kilometers). The values are compared with water samples (mean  $\pm$  SE) from the salt spring at Salt Springs State Park (n = 3) and Marcellus (n = 4) and Upper Devonian (n = 5) production gases (15).

seem to be derived locally in the shallow aquifers, and the gas composition is not consistent with extensive microbial production from methanogenesis or sulfate reduction. Methanotrophy also does not seem to be occurring broadly across our dataset; it would decrease [CH<sub>4</sub>] and C<sub>1</sub>:C<sub>2</sub> ratios and increase  $\delta^{13}$ CH<sub>4</sub> values, reducing the differences that we observed for distance to gas wells. Overall, the combined results suggest that natural gas, derived at least in part from thermogenic sources consistent with Middle Devonian origin, is present in some of the shallow water wells <1 km away from natural gas wells.

The two simplest explanations for the higher dissolved gas concentrations that we observed in drinking water are (i) faulty or inadequate steel casings, which are designed to keep the gas and any water inside the well from leaking into the environment, and (ii) imperfections in the cement sealing of the annulus or gaps between casings and rock that keep fluids from moving up the outside of the well (4, 40–42). In 2010, the Pennsylvania Department of Environmental Protection (DEP) issued 90 violations for faulty casing and cementing on 64 Marcellus shale gas wells; 119 similar violations were issued in 2011.

Distinguishing between the two mechanisms is important because of the different contamination to be expected through time. Casing leaks can arise from poor thread connections, corrosion, thermal stress cracking, and other causes (43). If the protective casing breaks or leaks, then stray gases could be the first sign of contamination, with less mobile salts and metals from formation waters or chemicals from fracturing fluids potentially coming later. In contrast, faulty cement can allow methane and other gases from intermediate layers to flow into, up, and out of the annulus into shallow drinking water layers. In such a scenario, the geochemical and isotopic compositions of stray gas contamination would not necessarily match the target shale gas, and no fracturing chemicals or deep formation waters would be expected, because a direct connection to the deepest layers does not exist; also, such waters are unlikely to migrate upward. Comprehensive analyses of well integrity have shown that sustained casing pressure from annular gas flow is common. A comprehensive analysis of ~15,500 oil and gas wells (43) showed that 12% of all wells drilled in the outer continental shelf area of the Gulf of Mexico had sustained casing pressure within 1 y of drilling, and 50-60% of the wells had it from 15 y onward. For our dataset, there is a weak trend to higher methane concentrations with increasing age of the gas wells (P =0.067 for [CH<sub>4</sub>] vs. time since initial drilling). This result could mean that the number of drinking water problems may grow with time or that drilling practices are improving with time; more research is needed before firm conclusions can be drawn.

In addition to well integrity associated with casings or cementing, two other potential mechanisms for contamination by hydraulic fracturing/horizontal drilling include enhancing deep-toshallow hydraulic connections and intersecting abandoned oil and gas wells. Horizontal drilling and hydraulic fracturing can stimulate fractures or mineralized veins, increasing secondary hydraulic connectivity. The upward transport of gases is theoretically possible, including pressure-driven flow through open, dry fractures and pressure-driven buoyancy of gas bubbles in aquifers and water-filled fractures (44, 45). Reduced pressures after the fracturing activities could also lead to methane exsolving rapidly from solution (46). If methane were to reach an open fracture pathway, however, the gas should redissolve into capillary-bound water and/ or formation water, especially at the lithostatic and hydrostatic pressures present at Marcellus depths. Legacy or abandoned oil and gas wells (and even abandoned water wells) are another potential path for rapid fluid transport. In 2000, the Pennsylvania DEP estimated that it had records for only 141,000 of 325,000 oil and gas wells drilled historically in the state, leaving the status and location of ~184,000 abandoned wells unknown (47). However, historical drilling activity is minimal in our study area of northeastern Pennsylvania, making this mechanism unlikely there.

pane, and <sup>4</sup>He. Based on the spatial distribution of the hydrocarbons (Figs. 1 and 2), isotopic signatures for the gases (Figs. 3 and 4), wetness of the gases (Fig. 2 and Figs. S5, S6, and S7), and observed differences in  ${}^{4}$ He:CH<sub>4</sub> ratios (Fig. 5), we propose that a subset of homeowners has drinking water contaminated by drilling operations, likely through poor well construction. Future research and greater data disclosure could improve understanding of these issues in several ways. More research is needed across the Marcellus and other shale gas plays where the geological characteristics differ. For instance, a new study by Duke University and the US Geological Survey showed no evidence of drinking water contamination in a part of the Fayetteville Shale with a less fractured or tectonically deformed geology than the Marcellus and good confining layers above and below the drinking water layers (48). More extensive predrilling data would also be helpful. Additional isotopic tools and geochemical tracers are needed to determine the source and mechanisms of stray gas migration that we observed. For instance, a public database disclosing yearly gas compositions (molecular and isotopic  $\delta^{13}$ C and  $\delta^{2}$ H for methane and ethane) from each producing gas well would help identify and eliminate sources of stray gas (49). In cases where carbon and hydrogen isotopes may not distinguish deep Marcellus-derived methane from shallower, younger Devonian methane, the geochemistry of <sup>4</sup>He and other noble gases provides a promising approach (15, 50). Another research need is a set of detailed case studies of water-quality measurements taken before, during, and after drilling and hydraulic fracturing. Such studies are underway, including partnerships of EPA- and Department of Energy-based scientists and industry in Pennsylvania, Texas, and North Dakota. In addition to predrilling data, disclosure of data from mud-log gases and wells to regulatory agencies and ideally, publicly would build knowledge and public confidence. Ultimately, we need to understand why, in some cases, shale gas extraction contaminates groundwater and how to keep it from happening elsewhere.

This study examined natural gas composition of drinking water

using concentration and isotope data for methane, ethane, pro-

### Methods

A total of 81 samples from drinking water wells were collected in six counties in Pennsylvania (Bradford, Lackawanna, Sullivan, Susquehanna, Wayne, and Wyoming), and results were combined with 60 previous samples described in the work by Osborn et al. (4). The samples were obtained from homeowner associations and contacts with the goal of sampling Alluvium, Catskill, and Lock Haven groundwater wells across the region. For analyses of <sup>4</sup>He (Fig. 5), samples from 30 drinking water wells were used to estimate concentration ratios of <sup>4</sup>He:CH<sub>4</sub>. Wells were purged to remove stagnant water and then monitored for pH, electrical conductance, and temperature until stable values were recorded. Samples were collected upstream of any treatment systems and as close to the water well as possible, preserved in accordance with procedures detailed in SI Text, and returned immediately to Duke University for analyses. The chemical and isotope ( $\delta^{13}$ C-DIC,  $\delta^{2}$ H-H<sub>2</sub>O, and  $\delta^{18}$ O-H<sub>2</sub>O) compositions of the collected waters were measured at Duke University's Environmental Stable Isotope Laboratory. Values of  $\delta^{18}$ O-H<sub>2</sub>O and  $\delta^2 \text{H-H}_2 \text{O}$  were measured using temperature conversion elemental analysis/continuous flow isotope ratio MS using a ThermoFinnigan temperature conversion elemental analysis and Delta+XL mass spectrometer and normalized to Vienna Standard Mean Ocean Water (analytical precision of  $\pm$ 0.1‰ and  $\pm 1.5\%$  for  $\delta^{18}$ O-H<sub>2</sub>O and  $\delta^{2}$ H-H<sub>2</sub>O, respectively). Samples of <sup>4</sup>He were collected in refrigeration-grade copper tubes flushed with water before sealing with stainless steel clamps and analyzed using a VG 5400 MS at the University of Rochester (15, 51).

Dissolved gas samples were collected in the field using procedures detailed by Isotech Laboratories (52), stored on ice until delivery to their facilities, and analyzed for concentrations and isotopic compositions of methane, ethane, and propane. Procedures for gas analyses are summarized in ref. 4. Isotech Laboratories uses chromatographic separation followed by combustion and dual-inlet isotope ratio MS to measure dissolved gas concentrations,  $\delta^{13}$ C-CH<sub>4</sub>, and  $\delta^{13}$ C-C<sub>2</sub>H<sub>6</sub> (detection limits for C<sub>1</sub>, C<sub>2</sub>, and C<sub>3</sub> were 0.001, 0.0005, and 0.0001 mol %, respectively). Dissolved [CH<sub>4</sub>] and  $\delta^{13}$ C-CH<sub>4</sub> were also determined by cavity ring-down spectroscopy in the Duke Environmental Stable Isotope Laboratory on eight samples using a Picarro G2112i. Dissolved [CH<sub>4</sub>] was equilibrated using a head-space equilibration method (53) and diluted when necessary using zero air. A set of 33 groundwater samples with a range of [CH<sub>4</sub>] and  $\delta^{13}$ C-CH<sub>4</sub> was collected in duplicate and analyzed at both Duke University and Isotech Laboratories (Fig. S9). Hydrocarbon concentrations in groundwater were converted to milligrams of CH<sub>4</sub> L<sup>-1</sup> from a correlation with mol % ( $R^2$  = 0.95). As in refs. 4 and 11, the derived distances to gas wells represent planimetric lengths from sampling locations to nearest gas wells and do not account for the direction or extent of horizontal drilling underground. Distances to streams

- 1. Kargbo DM, Wilhelm RG, Campbell DJ (2010) Natural gas plays in the Marcellus Shale: Challenges and potential opportunities. *Environ Sci Technol* 44(15):5679–5684.
- Kerr RA (2010) Energy. Natural gas from shale bursts onto the scene. Science 328(5986): 1624–1626.
- US Energy Information Administration (2013) Natural Gas Monthly March 2013 (US Energy Information Administration, Washington, D.C.), DOE/EIA 0130(2013/03).
- Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. *Proc Natl* Acad Sci USA 108(20):8172–8176.
- Schmidt CW (2011) Blind rush? Shale gas boom proceeds amid human health questions. Environ Health Perspect 119(8):A348–A353.
- Pétron G, et al. (2012) Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. J Geophys Res 117(D4):D04304.
- Ellsworth WL, et al. (2012) Are Seismicity Rate Changes in the Midcontinent Natural or Manmade? (US Geological Survey, Menlo Park, CA).
- Howarth RW, Ingraffea A, Engelder T (2011) Natural gas: Should fracking stop? Nature 477(7364):271–275.
- 9. Jiang M, et al. (2011) Life cycle greenhouse gas emissions of Marcellus shale gas. Environ Res Lett 6(3):034014.
- DiGiulio DC, Wilkin RT, Miller C, Oberley G (2011) Investigation of Ground Water Contamination Near Pavillion, Wyoming (US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Ada, OK), p 74820.
- Warner NR, et al. (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. *Proc Natl Acad Sci USA* 109(30):11961–11966.
- Chapman EC, et al. (2012) Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction. *Environ Sci Technol* 46(6):3545–3553.
- Boyer EW, et al. (2012) The Impact of Marcellus Gas Drilling on Rural Drinking Water Supplies (The Center for Rural Pennsylvania, Harrisburg, PA).
- Jenden PD, Drazan DJ, Kaplan IR (1993) Mixing of thermogenic natural gases in northern Appalachian basin. Am Assoc Pet Geol Bull 77(6):980–998.
- Hunt AG, Darrah TH, Poreda RJ (2012) Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: A northern Appalachian Basin case study. Am Assoc Pet Geol Bull 96(10):1785–1811.
- Poreda RJ, Craig H, Arnorsson S, Welhan JA (1992) Helium isotopes in Icelandic geothermal systems. 1. He-3, gas chemistry, and C-13 relations. *Geochim Cosmochim Acta* 56(12):4221–4228.
- Frey MG (1973) Influence of Salina salt on structure in New York-Pennsylvania part of Appalachian Plateau. Am Assoc Pet Geol Bull 57(6):1027–1037.
- Faill R (1985) The Acadian Orogeny and the Catskill Delta. Geol Soc Am Spec Pap 201: 15–38.
- 19. Lohman SW (1957) Ground Water in Northeastern Pennsylvania (Pennsylvania Department of Conservation and Natural Resources, Harrisburg, PA), p 31.
- Geyer A, Wilshusen JP (1982) Engineering Characteristics of the Rocks of Pennsylvania; Environmental Geology Supplement to the State Geologic Map (Pennsylvania Geological Survey, Harrisburg, PA), p 300.
- Taylor L (1984) Groundwater Resources of the Upper Susquehanna River Basin, Pennsylvania: Water Resources Report 58 (Pennsylvania Department of Environmental Resources, Office of Parks and Forestry, Bureau of Topographic and Geologic Survey, Harrisburg, PA), p 136.
- Williams J, Taylor L, Low D (1998) Hydrogeology and Groundwater Quality of the Glaciated Valleys of Bradford, Tioga, and Potter Counties, Pennsylvania: Water Resources Report 68 (Commonwealth of Pennsylvania Department of Conservation and Natural Resources, Harrisburg, PA), p 89.
- Lash GG, Engelder T (2011) Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian foreland basin evolution. Am Assoc Pet Geol Bull 95(1):61–103.
- Brett CE, Baird GC, Bartholomew AJ, DeSantis MK, Straeten CAV (2011) Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America. Palaeogeogr Palaeoclimatol Palaeoecol 304(1-2):21–53.
- Trapp H, Jr., Horn MA (1997) Ground Water Atlas of the United States: Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia HA 730-L (USGS, Office of Ground Water, Reston, VA).
- 26. Bernard BB (1978) Light hydrocarbons in marine sediments. PhD dissertation (Texas A&M Univ, College Station, TX).
- Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. *Geochim Cosmochim Acta* 44(5):649–661.
- Molofsky LJ, Connor JA, Wylie AS, Wagner T, Farhat SK (2013) Evaluation of methane sources in groundwater in northeastern Pennsylvania. *Groundwater* 51(3):333–349.

were determined as the shortest lengths from sampled locations to valley centerlines using the national stream network as the base map; distance to the Appalachian Structural Front was measured using GIS software. Statistical analyses were performed using MATLAB and R software.

ACKNOWLEDGMENTS. W. Chameides, the Jackson laboratory, and anonymous reviewers provided helpful suggestions on the work. We acknowledge financial support from the Nicholas School of the Environment and Center on Global Change and Fred and Alice Stanback to the Nicholas School. We thank William Chameides, Dean of the Nicholas School, for supporting this research.

- 29. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. *Chem Geol* 161(1-3):291–314.
- Revesz KM, Breen KJ, Baldassare AJ, Burruss RC (2010) Carbon and hydrogen isotopic evidence for the origin of combustible gases in water supply wells in north-central Pennsylvania. *Appl Geochem* 25(12):1845–1859.
- Tilley B, et al. (2011) Gas isotope reversals in fractured gas reservoirs of the western Canadian Foothills: Mature shale gases in disguise. Am Assoc Pet Geol Bull 95(8):1399–1422.
- Burruss RC, Laughrey CD (2010) Carbon and hydrogen isotopic reversals in deep basin gas: Evidence for limits to the stability of hydrocarbons. Org Geochem 41(12):1285–1296.
- Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. Noble Gases in Geochemistry and Cosmochemistry, eds Porcelli D, Ballentine CJ, Wieler R (Minerolgical Society of America, Washington, D.C.), pp 539–614.
- Prinzhofer AA, Huc AY (1995) Genetic and post-genetic molecular and isotopic fractionations in natural gases. Chem Geol 126(3-4):281–290.
- Baldassare FJ, Laughrey CD (1997) Identifying the sources of stray methane by using geochemical and isotopic fingerprinting. *Environ Geosci* 4(2):85–94.
- Laughrey CD, Baldassare FJ (1998) Geochemistry and origin of some natural gases in the Plateau province of the central Appalachian basin, Pennsylvania and Ohio. Am Assoc Pet Geol Bull 82:317–335.
- Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. *Proc Natl Acad Sci USA* 108:8172–8176.
- Osborn SG, McIntosh JC (2010) Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin. Appl Geochem 25(3):456–471.
- Martini AM, et al. (1998) Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochim Cosmochim Acta 62(10):1699–1720.
- Bachu S, Watson TL (2009) Review of failures for wells used for CO<sub>2</sub> and acid gas injection in Alberta, Canada. Energy Procedia 1(1):3531–3537.
- Johns JE, Aloisio F, Mayfield DR (2011) Well integrity analysis in Gulf of Mexico wells using passive ultrasonic leak detection method. Society of Petroleum Engineers 142076-MS.
- Jackson RB, Rainey Pearson B, Osborn SG, Warner NR, Vengosh A (2011) Research and Policy Recommendations for Hydraulic Fracturing and Shale-Gas Extraction. Center on Global Change (Duke Univ, Durham, NC).
- 43. Brufatto C, et al. (2003) From mud to cement—building gas wells. *Oilfield Review* 15(3):62–76.
- Myers T (2012) Potential contaminant pathways from hydraulically fractured shale to aquifers. Ground Water 50(6):872–882.
- Schedl A, McCabe C, Montanez I, Fullagar P, Valley J (1992) Alleghenian regional diagenesis: A response to the migration of modified metamorphic fluids derived from beneath the Blue Ridge-Piedmont thrust sheet. J Geol 100(3):339–352.
- Cramer B, Schlomer S, Poelchau HS (2002) Uplift-related hydrocarbon accumulations: The release of natural gas from groundwater. *Geolog Soc Special Pubs* 196(1):447–455.
- DEP (2000) Pennsylvania's Plan for Addressing Problem Abandoned Wells and Orphaned Wells (Department of Environmental Protection, Bureau of Oil and Gas Management, Harrisburg, PA), Document # 550-0800-001.
- Kresse TM, et al. (2012) Shallow Groundwater Quality and Geochemistry in the Fayetteville Shale Gas-Production Area, North-Central Arkansas, 2011 (USGS), US Geological Survey Scientific Report 2012–5273 (Lafayette Publishing Service Center, Lafayette, LA).
- Jackson RB, Osborn SG, Vengosh A, Warner NR (2011) Reply to Davies: Hydraulic fracturing remains a possible mechanism for observed methane contamination of drinking water. Proc Natl Acad Sci USA 108(43):E872.
- Sherwood Lollar B, Ballentine CJ (2009) Noble gas-derived insights into deep carbon. Nat Geosci 2(8):543–547e.
- 51. Poreda RJ, Farley KA (1992) Rare gases in Samoan xenoliths. *Earth Planet Sci Lett* 113(1-2):129–144.
- Isotech Laboratories (2011) Collection of Groundwater Samples From Domestic and Municipal Water Wells for Dissolved Gas Analysis (Isotech Laboratories, Champaign, IL).
- Kampbell DH, Vandegrift SA (1998) Analysis of dissolved methane, ethane, and ethylene in ground water by a standard gas chromatographic technique. J Chromatogr Sci 36(5):253–256.
- Pennsylvania Spatial Data Access (PASDA) (2012) Online Mapping, Data Access Wizard, Oil and Gas Locations (Pennsylvania Department of Environmental Protection, Harrisburg, PA).
- 55. Baldassare F (2011) The Origin of Some Natural Gases in Permian Through Devonian Age Systems in the Appalachian Basin and the Relationship to Incidents of Stray Gas Migration (EPA Technical Workshops for Hydraulic Fracturing Study, Chemical & Analytical Methods, Murrysville, PA).

## **Supporting Information**

### Jackson et al. 10.1073/pnas.1221635110

### SI Text

Geological Setting. The study area (Fig. S1) was chosen because of its rapid expansion of drilling for natural gas from the Marcellus Shale (Pennsylvania); also, it has a limited history of prior oil and gas exploration. Additionally, the study area represents portions of both the upper Susquehanna and upper Delaware watersheds that provide drinking water to >15 million people. The geological setting and methods for the work have been described previously in the works by Osborn et al. (1) and Warner et al. (2). Briefly, the sedimentary geology represents periods of deposition, burial, lithification, uplift, and subsequent erosion that form relatively simple sets of horizontal strata dipping 1° to 3° to the south and east derived from depositional environments that ranged from proposed deep to midbasin black shales to terrestrial red beds (3–5). The monocline is bounded on the north by the Precambrian Canadian Shield and Adirondack uplift (north to northeast), the west by the Algonquin and Findlay arches, and the south and east by the Appalachian fold belt (the Valley and Ridge Province) (6, 7). In general, sedimentary deposition in the northern Appalachian Basin was relatively continuous throughout the Paleozoic era. However, several unconformities erase sequence records regionally, such as the Tri-States unconformity that removed Lower Devonian strata in western New York, but complete sequences are generally found in central New York and our study region of northeastern Pennsylvania (3).

The Appalachian Basin consists primarily of sedimentary sequences of Ordovician to Pennsylvanian age that are derived from the Taconic (~450 Ma), Acadian (~410–380 Ma), and Alleghanian (~330–250 Ma) orogenic events (8). Exposed at its northern extent near Lake Ontario is the Upper Ordovician–Lower Silurian contact (Cherokee unconformity). Younger deposits (Upper Silurian, Devonian, and Mississippian) occur in successive outcrop belts to the south to the Appalachian structural front (4, 9), whereas erosion has removed most post-Pennsylvanian deposition within western-central New York and most of our study area within northeastern Pennsylvania. Bedrock thickness within the basin ranges from ~920 m along the southern shore of Lake Ontario in northern New York to ~7,600 m along the Ap-

- Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. *Proc Natl* Acad Sci USA 108(20):8172–8176.
- Warner NR, et al. (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci USA 109(30):11961–11966.
- Brett CE, Goodman WM, LoDuca ST, Lehmann DF (1996) Upper Ordovician and Silurian strata in western New York: Sequences, cycles and basin dynamics. New York State Geological Association Field Trip Guide, 1996, ed Brett CE (University of Rochester, Rochester, NY), pp 71–120.
- Lash GG, Engelder T (2011) Thickness trends and sequence stratigraphy of the Middle Devonian Marcellus Formation, Appalachian Basin: Implications for Acadian foreland basin evolution. Am Assoc Pet Geol Bull 95(1):61–103.
- Brett CE, Baird GC, Bartholomew AJ, DeSantis MK, Straeten CAV (2011) Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America. Palaeogeogr Palaeoclimatol Palaeoecol 304(1-2):21–53.

palachian structural front to the south. A simplified stratigraphic reconstruction is presented in Fig. S2 for the study area, which constitutes a transition from the Valley and Ridge to the Plateau Province. Compared with the Valley and Ridge Province or the region near the Appalachian Structural Front, the plateau portion of the Marcellus Formation is significantly less deformed (10). Deformation began during the onset of the Alleghanian orogeny. In the plateau physiographic province, deformation is accommodated by a combination of layer parallel shortening, folding that led to low-amplitude anticline/syncline sequences, low angle thrust faulting structures, lineaments, joints, and natural fractures observable in northeastern Pennsylvania (4, 11, 12).

The Marcellus Formation is an organic-rich, hydrocarbonproducing, siliciclastic-rich black shale present beneath much of Pennsylvania, New York, West Virginia, and other northeastern states. It constitutes the stratigraphically lowest subgroup of the Middle Devonian Hamilton Group (5, 9) and was deposited in the foreland basin of the Acadian Orogeny (~385–375 Ma). The Marcellus Formation includes two distinct calcareous and ironrich black shale members [i.e., the Union Springs (lower) and Mount Marion/Oatka Creek (upper)) interrupted by the Cherry Valley limestone].

Like the Marcellus, the upper part of the Devonian sequence is deposited in the foreland basin of the Acadian Orogeny and consists of material sourced from the Acadian orogeny as part of the Catskill Deltaic sequence. Above the Marcellus, the Hamilton Group consists of the Mahantango gray shale locally interbedded by limestones and the Tulley limestone. The Upper Devonian consists of thick synorogenic sequences of gray shales (i.e., the Brallier Formation) beneath the Lock Haven Formation sandstone and Catskill Formation clastic deltaic red sandstones. The Lock Haven and Catskill Formations constitute the two primary aquifer lithologies in northeastern Pennsylvania along with the overlying glacial and sedimentary alluvium, which is thicker in valleys than the uplands.

Additional geological information is in the work by Osborn et al. (1) and references therein and the work by Warner et al. (2) and references therein.

- Milici RC, de Witt W, Jr. (1988) The Appalachian Basin, ed Sloss LL (Geological Society of America, Boulder, CO), The Geology of North America, pp 427–469.
- Jenden PD, Drazan DJ, Kaplan IR (1993) Mixing of thermogenic natural gases in Northern Appalachian Basin. Am Assoc Pet Geol Bull 77(6):980–998.
- Rast N, ed (1989) The Evolution of the Appalachian Chain (Geological Society of America, Boulder, CO), Vol A, pp 347–358.
- Straeten CAV, Brett CE, Sageman BB (2011) Mudrock sequence stratigraphy: A multiproxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeogr Palaeoclimatol Palaeoecol 304(1-2):54–73.
- Faill RT (1997) A geologic history of the north-central Appalachians. 1. Orogenesis from the mesoproterozoic through the taconic orogeny. Am J Sci 297(6):551–619.
- Jacobi RD (2002) Basement faults and seismicity in the Appalachian Basin of New York State. *Tectonophysics* 353(1–4):75–113.
- Alexander S, Cakir R, Doden AG, Gold DP, Root SI (2005) Basement depth and related geospatial database for Pennsylvania. 4th Open-File General Geology Report 05-01.00 (Pennsylvania Geological Survey, Middletown, PA).



**Fig. S1.** Map of well water sampling locations in Pennsylvania and New York. The star in *Upper* represents the location of Binghamton, New York. (*Lower Right*) A close-up view of Susquehanna County, Pennsylvania. The stars in *Lower Right* represent the towns of Dimock, Brooklyn, and Montrose, Pennsylvania. The red and blue lines represent the approximate location of the cross-sections in Fig. S2.





Fig. S2. Generalized stratigraphic section of the study region from the work by Osborn et al. (1), Molofsky et al. (2), and Warner et al. (3) and references therein. The cross sections shown here refer to the locations identified in Fig. S1.

- 1. Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci USA 108(20):8172–8176.
- Molofsky LJ, Connor JA, Wylie AS, Wagner T, Farhat SK (2013) Evaluation of methane sources in groundwater in northeastern Pennsylvania. *Groundwater* 51(3):333–349.
  Warner NR, et al. (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. *Proc Natl Acad Sci USA* 109(30): 11961–11966.



Fig. S3. Methane concentrations (milligrams per liter) vs. distance to nearest gas wells (kilometers) with data from the initial study (1) in filled circles and new observations in red triangles.

1. Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci USA 108(20):8172–8176.



Fig. S4. Concentrations of ethane vs. methane across the groundwater dataset (P = 0.0034;  $R^2 = 0.205$ ).



Fig. S5. The ratio of propane to methane concentrations vs. propane concentrations (mol%) for our data from drinking water wells (filled circles), the salt spring at Salt Springs State Park in Franklin Forks, Pennsylvania (red squares), and Marcellus production gas (blue triangle) (1).

1. Jenden PD, Drazan DJ, Kaplan IR (1993) Mixing of thermogenic natural gases in Northern Appalachian Basin. Am Assoc Pet Geol Bull 77(6):980–998.



Fig. S6. The ratios of propane to ethane  $(C_3/C_2)$  and methane to ethane  $(C_1/C_2)$  concentrations for our data from drinking water wells (filled circles), the salt spring at Salt Springs State Park in Franklin Forks, Pennsylvania (red squares), and Marcellus production wells across the study area (blue triangles) (1, 2).

1. Jenden PD, Drazan DJ, Kaplan IR (1993) Mixing of thermogenic natural gases in Northern Appalachian Basin. Am Assoc Pet Geol Bull 77(6):980–998.

2. Laughrey CD, Baldassare FJ (1998) Geochemistry and origin of some natural gases in the Plateau province, central Appalachian basin, Pennsylvania and Ohio. Am Assoc Pet Geol Bull 82(2):317-335.



Fig. S7. The ratio of propane to ethane concentrations vs. methane concentrations (mol%) for our data from drinking water wells (filled circles), the salt spring at Salt Springs State Park in Franklin Forks, Pennsylvania (red squares), and production gases in the area (blue triangles) (1, 2).

1. Jenden PD, Drazan DJ, Kaplan IR (1993) Mixing of thermogenic natural gases in Northern Appalachian Basin. Am Assoc Pet Geol Bull 77(6):980–998.

2. Laughrey CD, Baldassare FJ (1998) Geochemistry and origin of some natural gases in the Plateau province, central Appalachian basin, Pennsylvania and Ohio. Am Assoc Pet Geol Bull 82(2):317–335.



**Fig. S8.** (*Upper*) Plot of the carbon isotopes in  $\delta^{13}$ C dissolved inorganic carbon ( $\delta^{13}$ C-DIC) in groundwater vs. carbon isotopes in coexisting methane ( $\delta^{13}$ C-CH<sub>4</sub>), which illustrates that samples do not plot within methanogenesis or sulfate reduction zones. Ranges in  $\delta^{13}$ C-DIC for methanogenesis and sulfate reduction are taken from the work by Clark and Fritz (1). VPDB, Vienna Pee Dee belemnite. (*Lower*) Plot of  $\delta^2$ H-CH<sub>4</sub> of dissolved methane in groundwater vs.  $\delta^2$ H-H<sub>2</sub> of the groundwater. The fractionation line for microbial methanogenesis by CO<sub>2</sub> reduction depicted is from the work by Whiticar et al. (2). Microbial methane from the Michigan and Illinois Basins is depicted with the yellow oval (3, 4). Northern Appalachian Basin data are depicted in the gray oval (5). The lack of positive correlation between the two hydrogen sources indicates that microbial methane is negligible in the shallow groundwater. VSMOW, Vienna Standard Mean Ocean Water.

- 1. Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology (Lewis, New York).
- 2. Whiticar MJ, Faber E, Schoell M (1986) Biogenic methane formation in marine and freshwater environments: CO<sub>2</sub> reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta 50(5):693–709.
- 3. Martini AM, et al. (1998) Genetic and temporal relations between formation waters and biogenic methane: Upper Devonian Antrim Shale, Michigan Basin, USA. Geochim Cosmochim Acta 62(10):1699–1720.

4. McIntosh JC, Walter LM, Martini AM (2002) Pleistocene recharge to midcontinent basins: Effects on salinity structure and microbial gas generation. Geochim Cosmochim Acta 66(10):1681–1700.

5. Osborn SG, McIntosh JC (2010) Chemical and isotopic tracers of the contribution of microbial gas in Devonian organic-rich shales and reservoir sandstones, northern Appalachian Basin. Appl Geochem 25(3):456–471.



Fig. S9. Comparisons of Isotech Laboratories and cavity-ring down (CRD) spectrometry analyses for (*Upper*) [CH<sub>4</sub>] and (*Lower*)  $\delta^{13}$ C-CH<sub>4</sub> analyzed in duplicate at both Isotech Laboratories and the Duke Environmental Stable Isotope Laboratory. These results show statistically indistinguishable differences between the two data analysis methods.